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INTRODUCTION

Let m be an even positive integer and let w(x)=exp(—x™). The
orthogonal polynomials associated with w(x), denoted by {p,(x)}r%, are
defined by

[ pmp@we dr=0, =k,
= (1)
=1, n==k

and p,(x)=7y,x"+ -+, with y,>0.
A survey by Nevai [9] contains recent investigations into the properties
of this class of orthogonal polynomials.

The zeros of p,(x) are all real and distinct and are denoted by
Xpn <Xy 1,< 0 <Xy

The main result of this paper is the following theorem.

THEOREM 1. For n=1, 2,... the following estimates hold.

(i) pa(x)exp(—x")<a/\/xj,—x*  when |x]|<x,,

Jor some fixed positive number a;

(ii) maﬁpf‘(x) exp(—x™)=b, (n3~ "),
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for some sequence {b,}X_, of positive numbers satisfying 0<
1i_m;z~—>w bnghmn—roo bn< 0.

For m =2 these results are known: (i) is due to Erdélyi [1]; (ii) comes
from Plancheral-Rotach asymptotics [11, p.201] and Sonin’s theorem
[11, p. 166]. When m > 4 these results are new although part (i) contains a
result of Nevai’s [8] when | x| < (1 —¢) x,, for any ¢> 0, and improves an
estimate of Lubinsky [3]. Part (ii), when m >4, disproves a conjecture of
Nevai [6] that the sequence

M, =max p2(x) exp(—x"}, n=12,..,
xeR

is bounded.

THE DIFFERENTIAL EQUATION

In order to prove Theorem 1, a differential equation associated with
pn(x)exp(—x™/2) is obtained. This has been done when m=2,4, and 6
(see [11, 7, and 10], respectively).

THEOREM 2. For n=1,2,.., let
(m—2)/2 2i 2i+1 )
An(x)zm Z (il>lzy;~l+cn(n—l+i/m):| xm721+2,
i=0 n

when the real sequence {c,}>_, is bounded. A differential equation associated
with p,(x) is

7+ (%) 2=0
with

2= p, (x)[exp(— (x"/2) + £, (x) /L2 (x)

where the function g,(x) is twice differentiable and uniformly bounded in n
when &| x| <n'™ for >0, and

a0 =430 (1 () ) o =2

1n

where the function h,(x) is uniformly bounded in n when &|x| <n'™ for
e>0.
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To verify the differential equation, we need not only the proof of Freud’s

conjecture by Magnus [4] but also the estimate [5]

Yn—1 1 —@m+1
L——:Bn /'”—i—d,,n (2m+1)/m

n

where

=[]

and {d,}>_, is a bounded real sequence.

The proof of Theorem 1 is complicated but uses only elementary proper-

ties of the differential equation. Theorem 1 has applications to Lagrange
interpolation at the zeros of p, (x) (see, e.g., [2]).
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